SIFTER: Search Services for Digital Libraries

CLIOH: Cultural digital Library Indexing Our Heritage

Mathew J. Palakal

SIFTER Research Team CLIOH Research Team

Indiana University Purdue University Indianapolis Indiana University Bloomington

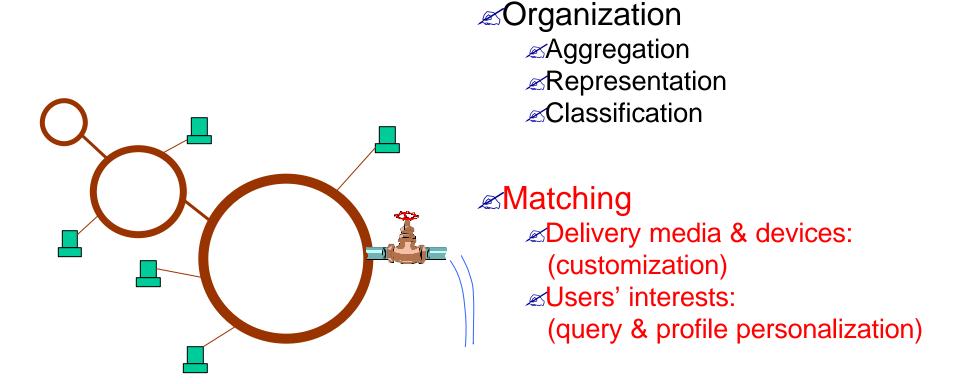
DLI/IMLS/NSDL PI Meeting, Portland, July 18, 2002

Search

- Information searching is a basic necessity ...
 - Critical to the usefulness of a digital library
- Information available through a digital library may actually come from many different sources (both historical and recent)
- Users may need access to multiple digital libraries distributed across the globe

Search as a "utility" service USER

LAN


WAN

MAN

∠Persistent - always on∠Robust - scalable

High quality - standards

Effective Search Service

Presentation & interaction
Prune, cluster, rank, format,
visualize

Key Challenges

- 1. Data Diversity
 - Diverse sources
 - Numerous formats
 - Heterogeneous content
- 2. Dynamic Environment
 - Content drift
 - Quality change
- 3. User needs
 - User's demands are context-sensitive
 - User's interest vary and may change over time

Rising to the Challenge

?

SIFTER

Smart Information Filtering Technologies for Electronic Resources

Developing algorithms and systems that utilize both IR and AI approaches

Problem 1: Data Diversity

- Need to identify document semantics: labels, terms and concepts
- Need to identify associations among concepts, terms or labels

Data Diversity: SIFTER Solutions

Representation:

- Use of thesauri
- Algorithms to convert data elements to efficiently computable structures

Classification:

- Use of comprehensive classification schemes
- Algorithms to cluster or classify to higher level representations

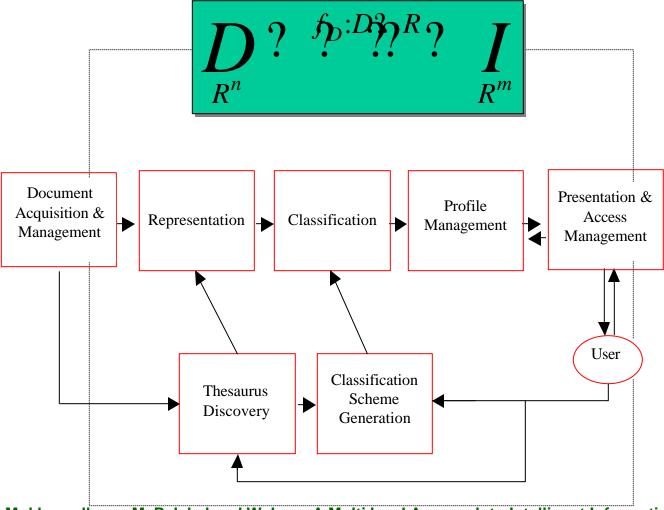
Problem 2: Dynamic Sources

Local users -> local vocabularies and functions

New "vocabularies" are introduced and they need to be discovered

Dynamic Sources: SIFTER Solutions

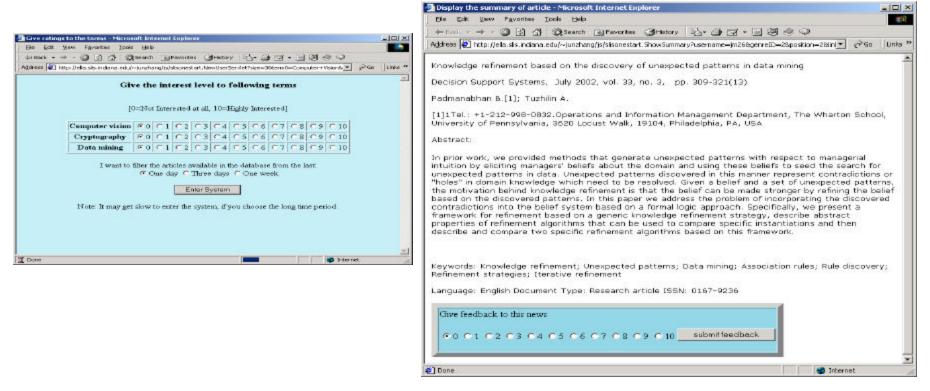
- Distributed knowledge and functions using multi-agent architecture
- Vocabulary discovery based on discriminatory power
- Classification scheme generation and ongoing replenishment


Problem 3: User Need

- Interest information usually covers a small subset of the universe of topics (a profile), therefore service has to be "personalized"
- Identification and capturing of profile cannot rely directly and exclusively on the user
- Interest may not be constant over topics and can change gradually or rapidly

User Need: SIFTER Solution

- User profile modeling: capture interest in a representation that supports topic "exploration" and reduces user involvement
- Promote control and convenient modification
- Detect "interest shifts"
- Support model and domain visualizations


Modeling the Information Filtering Process

J. Mostafa, S. Mukhopadhyay, M. Palakal and W. Lam, A Multi-level Approach to Intelligent Information Filtering: Model, System, and Evaluation, *ACM Transactions on Information Systems*, Vol. 15, No. 4, pp. 368-399, 1997

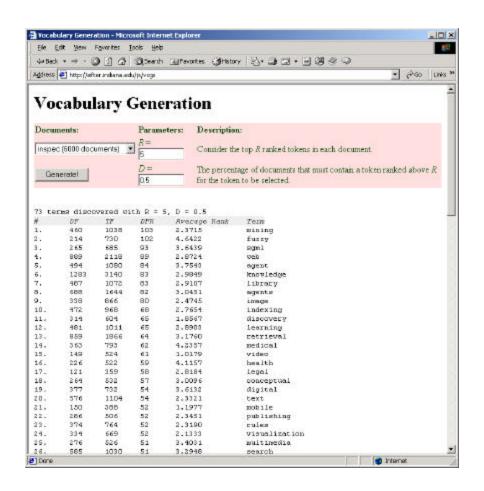
Capturing User's Interest

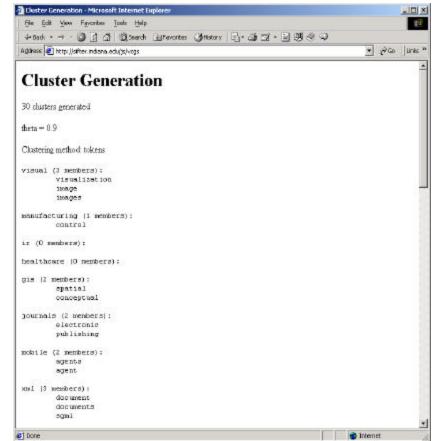
Explicit (topics), rating content, and user behavior

Lam, W. & Mostafa, J. "Modeling User Interest Shift Using a Bayesian Approach". Journal of the American Society for Information Science & Technology, 52(5), 416-429, 2001

Representation & Classification

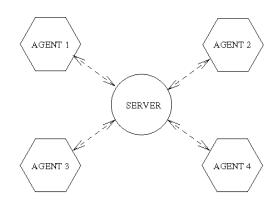
- Representation:
 - Use of thesauri
 - Algorithms to convert data stream to efficiently computable structures
- Classification:
 - Algorithms to cluster or classify to higher level representations


Automated Approaches


- Learned from existing classification results used PUBMED for training
- Developed algorithms for vocabulary and association discovery

MeSH Classes
Cell Adhesion
Cell Communication
Cell Death
Cell Movement
Cell Survival
Endocytosis
Antibody Formation
Autoimmunity
Immunocompromised Host
Cytotoxicity Immunologic
Immune Tolerance
Immunity Cellular
Regeneration
Evolulution
Complement Activation

Automatically Produced Classes				
Cell, Binding				
Cell, Adhesion, Growth, Antigen				
Communication, Death				
Apoptois				
Migration				
Production, Motility				
Tolerance				
Virus				
Endocytosis, Receptor				
Antibody, Serum				
Autoimmune				
Tumor				
Immunocompromised, Infected				
Cytotoxic				
Immune, Cell, Response, Gene, Class				
Regeneration				
Evolution, DNA				
Complement, Activation, Plasma, Membrane				
Transplant				
Muscle				
Expression				

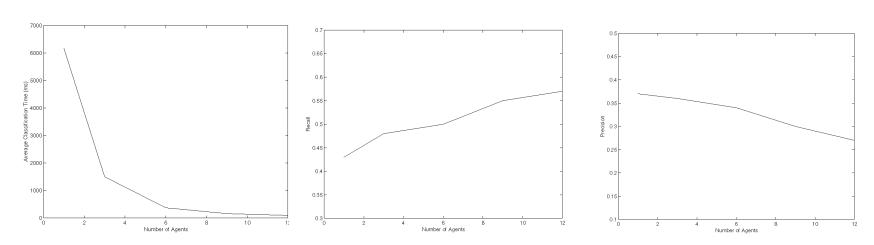

Interactive Term and Cluster Discovery



Diverse Sources: Distributed Services

D-SIFTER

Distributed knowledge & Local functionality


Distributed knowledge & Distributed functionality

Raje, R., Qiao, M., Mukhopadhyay, S., Palakal, M., & J. Mostafa, J. "Homogeneous Agent-based Distributed Information Filtering", *Cluster Computing*, 2002 (in press)

Raje, R., Qiao, M., Mukhopadhyay, S., Palakal, M., & J. Mostafa, SIFTER-II: A Heterogeneous Agent Society for Information Filtering, *Proceedings of ACM Symposium on Applied Computing, SAC'01*, pp. 121-123, Las Vegas, Nevada, 2002.

Evaluation of Distributed Filtering

- Progressively larger number of users -> larger agent community -> time to classify decreases
- Growing user community -> increasing number of agents -> precision suffers moderately but recall improves
- With increasing number of "user agents" classification efficiency improves

Processing Time

Filtering Performance

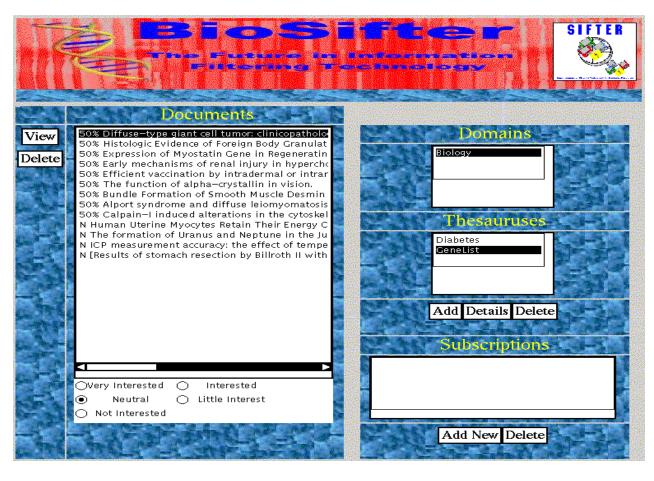
SIFTER vs. the best in TREC

- TREC 2000 Filtering Track OHSUMED collection was used
- 293,856 documents in the test set
- 4967 topics (include OHSU and MeSH topics)
- Evaluated BOTH effectiveness and efficiency

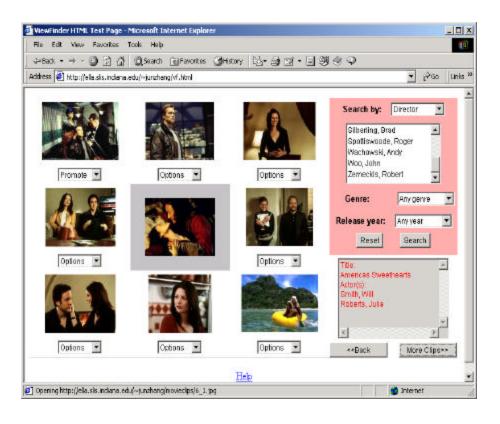
SYSTEMS	MnT9P	MnT9U	Proc. time/doc (in mSec)
Pudan	31.7	-1.1	NA
Microsoft	30.5	-5.3	NA
CMU-Y	26.1	-26.9	NA
KAIST	20	12.2	NA
SIFTER (theta 0.6)	30.6	-6.5	6165.8
D-SIFTER(3 agents)	29.9	-8.5	1500.7
D-SIFTER(6 agents)	28.8	-11.5	374.1
D-SIFTER (9 agents)	25.5	-23	162.7
D-SIFTER (12 agents)	22.9	-35	97.4
SIFTER-II(3 user agents)	29.1	-10.5	1602.5
SIFTER-II(6 user agents)	27.7	-14	523.2
SIFTER-II(9 user agents)	24.4	-26.5	329.4
SIFTER-II(12 user agents)	22	-38.5	192.1

S. Mukhopadhyay, S. Peng, M. Qiao, R. Raje, J. Mostafa, and M. Palakal, Distributed Multi-Agent Information Filtering, *ACM Transactions on Information Systems*, 2002 (pending review).

Diverse Formats


- Developing systems for health news (text), scholarly research publications (text), music (audio) and cultural information (all major formats)
 - MedSIFTER
 - TuneSIFTER
 - **BioSIFTER**
 - ✓ ViewFinder (CLIOH)

Systems for Different Data Formats: MedSIFTER


Systems for Different Data Formats: BioSIFTER

- Text Data
- Sequence Data
- Structural Data

M. Palakal, S. Mukhopadhyay, J. Mostafa, R. Raje, M. N'Cho, and S.K. Mishra, An Intelligent Biological Information Management System, *Bioinformatics*, 2002, (in press).

Systems for Different Data Formats: CLIOH

∠ Video Data
∠ Audio Data

ViewFinder

Beyond Current Challenges

- Cross-format, cross-language, and crossdomain information synthesis in real-time.
- Distributed DLs with both Data & Services
- Integrating Web Services with Multi-agent Searching

Acknowledgment

This project was funded in part by:

- The National Science Foundation (DLI-II and ITR I)
- Eli Lilly & Co., Indianapolis, Indiana

SIFTER Team:

- Mathew Palakal, Snehasis Mukhopadhyay, Javed Mostafa, Rajeev Raje
- Students: Mulong Yu, Matthew Stephens, Mingyaung Qiao,
 Shengquan Peng, Luz Quiroga, John Fieber, Vijay Vij